
OCaml Under The Hood: SmartPy
Seb Mondet∗, TQ Tezos†

Abstract
SmartPy is a complete system to develop smart-contracts
for the Tezos blockchain. It is an embedded EDSL in
python to write contracts and their tests scenarios. It in-
cludes an online IDE, a chain explorer, and a command
line interface. Python is used to generate programs in
an inperative, type infered, intermediate language called
SmartML. SmartML is also the name of the OCaml library
which provides an interpreter, a compiler to Michelson (the
smart-contract language of Tezos), as well as a scenario “on-
chain” interpreter. The IDE uses a mix of OCaml built with
js_of_ocaml and pure Javascript. The command line inter-
face also builds with js_of_ocaml to run on Node.js.

Introduction
Tezos is a blockchain project well known of the OCaml
ecosystem. It has support for rich smart-contracts, i.e. ac-
counts of “programmable money,” which are the ba-
sis for distributed applications (“DApps”) which use the
blockchain as a synchronization source between non-
trusting parties.
Michelson, the smart-contract language specified in the cur-
rent Tezos protocol, is a quite low-level, stack-based, stat-
ically typed, language. Even though some aficionados do
love programming in Michelson, most users prefer to avoid
it and, hence, quite a few higher-level language projects
have appeared in the ecosystem, e.g., SmartPy1, LIGO2,
Lorentz3, Juvix4, or Archetype5.
SmartPy is one of these projects but should be seen more
as a meta-programming framework than a (new) high-level
language. It uses some of python’s annotation features as

∗http://seb.mondet.org
†https://tqtezos.com
1https://smartpy.io
2https://ligolang.org/
3https://gitlab.com/morley-framework/morley
4https://github.com/cryptiumlabs/juvix/
5https://archetype-lang.org/

well as some light (optional) syntactic sugar to provide a
“native feel” but it is essentially a library of constructors for
SmartML programs and test scenarios. Here is a minimal
example:
import smartpy as sp
class HelloWorld(sp.Contract):

def __init__(self): self.init(mem = "")

@sp.entryPoint
def remember(self, param):

self.data.mem += param

@addTest(name = "Test")
def test():

scenario = sp.test_scenario()
scenario.h1("Let's Go!")
c = HelloWorld()
scenario += c
scenario += c.remember("Hello World")

The SmartPy team publishes the software under the MIT-
license periodically at https://gitlab.com/SmartPy/smartpy,
various builds (“stable”/“dev”/“test”) of the distribution are
also provided to users.

Why Python?
Python is one of the most popular languages in the world:
• It has an intuitive syntax for most people.
• It provides good meta-programming capabilities
(e.g. programmable AST annotations).

• New users (believe they) already know how to program
with it, they can focus on learning the really hard part:
smart-contract design and development.

SmartPy also provides a very complete online IDE as well
as a command-line application. Both allow the user to com-
pile, simulate, run (sandboxes and test-networks) and in-
spect the contracts.

Implementation
SmartPy programs use Python essentially as a very pow-
erful macro-language for SmartML. SmartML is an inper-
ative, fully type inferred, intermediate language which is
defined in an OCaml library. The library itself contains a

1

http://seb.mondet.org
https://tqtezos.com
https://smartpy.io
https://ligolang.org/
https://gitlab.com/morley-framework/morley
https://github.com/cryptiumlabs/juvix/
https://archetype-lang.org/
https://gitlab.com/SmartPy/smartpy


type-inference engine, an interpreter, an optimizing com-
piler to Michelson, as well as a scenario “on-chain” runner.
The WebIDE uses a mix of OCaml built with js_of_ocaml
and pure Javascript. The command line interface is also
buildt with js_of_ocaml in order to run with Node.js and
make distribution much easier.
The user edits their code written from scratch or, most
likely, imported from one of the many self-documenting
“templates” provided by the UI. The workflow of what hap-
pens when a user clicks on “Run & Test” in WebIDE is as
follows:
• The Python code is interpreted with Brython6.
• It constructs a SmartML expressions and scenarios.
• The contract and the tests enter the js_of_ocaml world:

– Full type inference and type checking.
– Simulation of the tests in the interpreter.
– Compilation to Michelson.
– Back to the UI to display the results.

The interpreter requires fast execution of the contracts in a
command line application and in the WebIDE. Moreover,
for interoperability some primitive operations of Michel-
son must match bit-for-bit what the interpreter computes
on both execution environments. This includes all the cryp-
tographic operations and the binary serialization of values.
For instance, a user should be able to use other tools to con-
struct the Ed2551 signatures fed to the entry-point in the
example below. The behavior of the call to check_signature
as well as the serialization (sp.pack) should match perfectly
the specification and implementation of the Tezos protocol:
@sp.entryPoint
def set_current_value(self, params):

thing_to_sign = sp.pack(
sp.record(

o = self.data.current_value,
n = params.new_value,
a = sp.self,
c = self.data.counter))

sp.verify(
sp.check_signature(

self.data.boss_public_key,
params.user_signature,
thing_to_sign))

self.data.current_value = params.new_value
self.data.counter = self.data.counter + 1

As current work-in-progress or future work items, our road-
map contains:
• Decompilation from Michelson to SmartPy.
• Other static analyses, such as abstract interpretation:
ownership, value domains, etc. and gas usage predic-
tion.

6https://brython.info/

• Other compilation targets, like contract storage
parsing code, or proof-friendly representations
(e.g. WhyML).

• An OCaml version of the EDSL, i.e. generate
SmartML from OCaml instead of Python.

Ecosystem and Real-World Users
SmartPy benefits from quite some popularity within the
Tezos ecosystem; especially given how “niche” the product
is. The main Telegram help-channel7 has more than 200
members, and the twitter8 account has about 600 followers.
There are already 3rd party online courses, like blockmat-
ics.io9 or “Cryptobots vs Aliens”10, and most hackathons
include SmartPy (e.g. CoinList11). Some nascent financial
applications such as ChainLink12 already build on the plat-
form. Generic development platforms like ConseilJS13 na-
tively support SmartPy.
We have also participated in the development of stan-
dard contract interfaces, through reference implementa-
tions. For instance, FA2-SmartPy14 implementation of
the TZIP-1215 standard abuses meta-programming features
to provide many different “builds” of the contract corre-
sponding to various options; it also happens to use OCaml-
code generation to provide type-safe access to those smart-
contract variants, the specialized command-line applica-
tion, used for demoing, benchmarks, and generating doc-
umentation can safely evolve as the draft specification
changes.

The Talk
The talk will present all of the above with a focus on:
• The specific OCaml aspects: the portability between
browser Vs Node.js packaging, the re-implementation
of lower-level Tezos functionality (including the cryp-
tographic functions from C compiled to Javascript us-
ing Emscripten and bound with gen_js_api16).

• The meta-programming approach both in Python and
OCaml.

7https://t.me/SmartPy_io/
8https://twitter.com/smartpy_io
9https://training.blockmatics.io/p/tezos-smartpy-developer-course/
10https://cryptocodeschool.in/tezos/
11https://coinlist.co/build/tezos
12https://chain.link/
13https://cryptonomic.github.io/ConseilJS/#/
14https://gitlab.com/smondet/fa2-smartpy
15https://gitlab.com/tzip/tzip
16https://github.com/LexiFi/gen_js_api

2

https://brython.info/
https://t.me/SmartPy_io/
https://twitter.com/smartpy_io
https://training.blockmatics.io/p/tezos-smartpy-developer-course/
https://cryptocodeschool.in/tezos/
https://coinlist.co/build/tezos
https://chain.link/
https://cryptonomic.github.io/ConseilJS/#/
https://gitlab.com/smondet/fa2-smartpy
https://gitlab.com/tzip/tzip
https://github.com/LexiFi/gen_js_api

	Introduction
	Why Python?
	Implementation
	Ecosystem and Real-World Users
	The Talk

