Genspio: Generating Shell Phrases In OCaml

Sebastien Mondet (@smondet)

Abstract

Genspio is a typed domain specific language embedded in
OCaml that compiles terms to POSIX shell scripts or one-
liners. It is used to build, for instance, complex deployment
scripts which need to be run over SSH on hosts that may not
have OCaml or any scripting language available.

The implementation is based on a GADT and has allowed us to
scale to increasingly complex “Dev-Ops” deployments, thanks
to the composability and modularity provided by OCaml itself.
We describe these in Secotrec, for now our heaviest use of the
Genspio EDSL.

While the released version has proved very useful, we detail
quite a few very interesting future work problems.

Genesis

The project started as an experiment: “how far can we go like
this?” and comes from two big sources of frustration. First,
while running bioinformatics pipelines, we often need shell
scripting to bypass idiosyncrasies of poorly written software.
Second, in a “Dev-Ops” context, where we need to run increas-
ingly complex deployment commands over SSH and through
sudo; both have escaping rules that can be inconsistent even
between minor versions. We want to manipulate a language
with rudimentary but “proper” types, while making sure we
rely only on the POSIX standard as common denominator.

Current Implementation

For the first version, we opted for a GADT-based internal rep-
resentation of the typed AST as it is more practical to exper-
iment with than, e.g., typed-tagless- final interpreters. In a fu-
ture, more stable, version we may switch to a more modular
representation.

We compile the EDSL to POSIX shell expressions; and we
verify the implementation through quite thorough testing. Of
course, there is nothing close to a formal specification of
POSIX compatible shells, the tests try to verify the generated
scripts against the informal documentation(s) of the standard.

The tests try to run on various shells found on the host (bash,
ksh, mksh, busybox, etc.) and can be configured to also

run on distant hosts with exotic operating systems over SSH.
Hence one does not need to install any OCaml dependency to
run the test suite.

From a user perspective, like any EDSL, the idea is to build
values of type 'a Genspio.EDSL.t through the combinators
found in the Genspio.EDSL module; and compile them with
functions from Genspio.Compile. See for instance:

let username_trimmed string t =
(* The usual shell-pipe operator is
‘output_as_string’ takes “stdout’
from a ‘unit t° as a ‘string t°
(exec ["whoami"] ||> exec ["tr"; "-d";
|> output_as_string

RRE

*

||\\n||])

The implementation of the compiler includes interesting en-
codings for portable shell datatypes, such as arbitrary strings
(using octal representations) or 'a list values (as multi-line
strings). It also makes much easier the use of trap and Unix
signals, as a method for jumping within a script. For instance
one can error management similar to “poor-mans exceptions”
with a high-level API:

with_failwith (fun error_function ->
let get_user =
(* the contents of "$USER": *)
getenv (string "USER") in

(* The operator "=$=" 1is "string t equality,
it returns a “bool t° that
we can use with ‘if_seq : *)

if_seq
(get_user =%$= username_trimmed)
~t:[(* more commands *)]
~e:[

(* "$USER® 1is different from
‘whoami”, system is broken,
we exit using the failwith
funtion: *)

error_function

~message: (string "I'm dying")
~return:(int 1)

1

The output, while difficult or even sometimes impossible to
read by a human, is meant fo ensure that the resulting script (or
“one-liner”) does not introduce portability errors on POSIX-
compliant shells.

The EDSL provides also higher-level “library” con-
structs implemented with the EDSL, e.g. the function
EDSL.Command_line.parse provides typed command line
parsing through difference lists (similar to OCaml’s Printf
module).

http://seb.mondet.org
https://keybase.io/smondet
http://www.hammerlab.org/docs/genspio/master/index.html
http://www.hammerlab.org/docs/genspio/master/api/EDSL.html
http://www.hammerlab.org/docs/genspio/master/api/Compile.html
https://drup.github.io/2016/08/02/difflists/

More examples and documentation are available from the
project page.

Scaling Deployments

The current version has already proved very useful, we provide
our users with easy “dev-ops” deployments to setup and mon-
itor themselves on cloud services (Google-Cloud and AWS),
cf. Secotrec.

The deployments involve setting up Ketrew and Coclobas
servers (released versions or arbitrary opam “pins”) with their
shared PostgreSQL database, and together with optional TLS
tunneling, and an authentication proxy. Those are based on
Docker-compose. Users can also setup Kubernetes clusters
on the Google Container Engine or AWS-Batch compute en-
vironments. Other options include “preparing” pre-computed
work environments for Biokepi workflows like Epidisco. Ke-
trew’s “Getting Started” setup for beginners is also based to
Secotrec-generated configurations.

Within this project, we have been able to scale far beyond we
could do with ordinary shell scripts as the only common de-
nominator, while preserving portability against, e.g., different
versions of OpenSSH and sudo.

Embedding the language into OCaml allows us to express
generic and composable shell “components,” with a good sep-
aration of concerns thanks to the module system. For instance,
we implement proper error management, with optional display
and optional recovery/clean-up code.

As a symbolic milestone, by using ssh -c .. with compiled
Genspio one-liners, we quickly reached the maximal length a
command line argument can have (130 KiB, see xargs --
show-1imits), and had to switch to generating shell scripts
and using SCP to run them properly as sh <script>.

Related Work

The OCaml ecosystem has already been working around the
untyped, dirty world of shell scripts. Examples include Jane
Street’s Shexp and Shcaml; although they do not solve the
same problem as Genspio. Just like usual “system” libraries,
such as Bos, they leverage OCaml to provide well designed
APIs, but they require a special environment (or interpreter)
on the host running the programs (i.e. they require OCaml de-
pendencies).

Future Work

In version 0.0.0, Genspio deals with the following few basic
types: int, bool, string, and 'a list. Among them, we
handle a single OCaml-like string type, and hence introduce a

confusion that will need to be addressed. In the POSIX-shell
world, just like in the C-language one, there are actually two
conceptual string types:

* byte arrays (contents of files, standard output of com-
mands, etc.) and

e NUL-terminated strings (shell variables or command
line arguments cannot contain the \000 character).

So far, Genspio can throw a compile-time exception when the
compiler detects a misuse of NUL-terminated strings, but the
check is obviously incomplete, and not based on proper types.
We need to distinguish two string types at the EDSL level: e.g.
c_string and string; and provide appropriate (potentially
failing) conversion functions between them.

Other new data-types should also be integrated in the lan-
guage:

* We need more expressive “streams” (i.e. iterable se-
quences) to handle big files or command outputs in a
more flexible way.

e We need a notion of embedded shell scripts. Indeed,
right now, the output of a compiler is sometimes used
as a value in a higher-level EDSL term (e.g. as a com-
mand line argument); this is not composable and modu-
lar enough.

Another interesting direction is extending the compilers to
non-POSIX interpreters, especially MS-Windows’ Batch com-
mand language, as it is the most common non-POSIX environ-
ment.

To ease debugging, and for future integration in other layers of
our workflows (cf. Ketrew), we also want a “display friendly”
representation of EDSL terms, with smart logging functions
which can allow the compiled shell scripts to reference code-
locations in the pretty-printed output.

The Talk

The presentation will introduce the project while stressing on
some details of the implementation with examples of use of
the library.

http://www.hammerlab.org/docs/genspio/master/index.html
https://github.com/hammerlab/secotrec
https://github.com/hammerlab/ketrew
https://github.com/hammerlab/coclobas
https://docs.docker.com/compose/
https://github.com/hammerlab/biokepi
https://github.com/hammerlab/epidisco
https://github.com/hammerlab/ketrew
https://github.com/hammerlab/ketrew
https://github.com/hammerlab/secotrec
http://www.hammerlab.org/docs/genspio/master/index.html
https://github.com/janestreet/shexp
http://tov.github.io/shcaml/doc/
https://github.com/dbuenzli/bos
https://github.com/hammerlab/ketrew

	Genesis
	Current Implementation
	Scaling Deployments
	Related Work
	Future Work
	The Talk

