
Bioinformatics, The Typed Tagless Final Way

Sebastien Mondet (@smondet)

Abstract

In the context of our Bioinformatics workflows library
Biokepi, we provide an embedded domain specific lan-
guage (EDSL) based on typed-tagless final interpreters.
The first implementation was based on a Generalized
Algebraic Data-Type (GADT) but the approach did
not scale well enough, and most importantly, we really
needed the EDSL to be extensible by the users of the
library.
The idea is to use OCaml’s module system instead of a
GADT, to provide typed EDSLs as module types and
write compilers as modules matching the signature; “pro-
grams” and program transformations are then functors
taking such an implementation as argument.
This talk will present the new implementation of our
EDSL, while discussing advantages and limitations of
the new approach and trying to be a quick tutorial on
type-tagless final interpreters in OCaml.

Brief History And Motivation

For the past 3.5 years, our research group has been de-
veloping a set of libraries and tools for running bioninfor-
matics workflows. These tools include Ketrew, a work-
flow engine based-on an OCaml API providing expres-
sive building blocks, called “workflow nodes,” to con-
struct complex computational pipelines. Ketrew is a very
generic tool, used not only for bioinformatics but also for
instance for system-administration tasks.
Biokepi is then a library of Ketrew workflow nodes
which wrap bioinformatics tools: their installation, their
use, and the fetching of their data requirements.
At first just as a nice experiment, we added a much
higher-level API to Biokepi designed as a typed EDSL.
The EDSL provided the level of granularity that a bioin-
formatician would want for designing a pipeline while
hiding details that can be considered boilerplate. The
implementation was based on a growing GADT defini-
tion whose terms were then compiled to more complex
Ketrew workflows.

This EDSL worked out quite well for our users thanks
to its conciseness and readability. It quickly grew to be-
come our default API to describe workflows but we hit a
couple of fundamental issues:

• The compiler (and the optimization passes) code
grew to become difficult to manage: there were
huge “match” statements, and the type errors were
very unwelcoming to OCaml beginners.

• The EDSL was still missing basic functional pro-
gramming constructs that limited its expressivity:
proper lambda/apply, list functions, etc.

• More importantly, the EDSL could not be extended
by users of the library: although there were a few
“hooks” to achieve some tasks, the GADT-based
definition is monolithic and closed.

We wanted what we already had plus, the users of the
library to be able to:

• Extend the language to their specific needs.
• Re-use default compilers and transformation when
implementing their extensions.

• Be able to implement transformations “by hand”
i.e. sometimes it is easier and more readable to
write the code than add an optimization pass.

We tried a few experiments that did not work out to full
potential:

• Extensible types are a new exciting feature but they
do not scale well for our needs: they loose a lot
of the “type-strength” benefits and end-up not being
extensible enough.

• Creating a basic functional language based-on
GADTs with limited extensible bioinformatics
terms.

Enter “Typed Tagless Final Interpreters” …

Extensible EDSLs

In July 2015, Oleg Kiselov introduced the Quel project
to the OCaml mailing-list (later published at PEPM’16).
The idea is to use OCaml’s module system, to provide
typed EDSLs as module types and write compilers as

1

http://seb.mondet.org
https://keybase.io/smondet
https://github.com/hammerlab/ketrew
https://github.com/hammerlab/biokepi
https://github.com/hammerlab/biokepi
https://github.com/hammerlab/ketrew
https://sympa.inria.fr/sympa/arc/caml-list/2015-07/msg00054.html
https://bitbucket.org/knih/quel
http://dl.acm.org/citation.cfm?doid=2847538.2847542


modules matching the signature; “programs” and pro-
gram transformations are then functors taking such an
implementation as argument. The approach ensures that
the EDSL is fully extensible.
We reimplemented our EDSL following Kiselov’s course
notes (based on Haskell and type-classes) and the imple-
mentation of Quel. The new extensible EDSL has grown
much bigger than the earlier implementation while keep-
ing maintenance manageable.
The language is more powerful:

• It has more functional constructs: lambda/apply,
list and pair functions, …

• It is easier to document thanks to being just module
types.

• It is easier to maintain thanks to separation of con-
cerns.

• And, most importantly, it is extensible by the users.
We maintain compilers to Ketrew workflows, JSON
“pipeline descriptions,” and Graphviz figures (dot lan-
guage); as well as a simple program-transformation
based on a more general and extensible “optimiza-
tion framework.” We have used the extensibility of
the EDSL to provide application-specific language con-
structs, e.g. in the Epidisco project, which includes cus-
tom language constructs for data management and gen-
erating its HTML report.

Figure 1: Example pipeline display from Epidisco

We have managed to get beginner OCaml users to
add new features to the EDSL: while the initial setup
can seem complex, EDSL modifications are mostly
“compiler-error-guided” and the main difficulty is ac-
tually understanding the underlying bioinformatics tool
and its idiosyncrasies.

Limitations

The approach has some caveats:

• Calling a compiler on a pipeline description re-
quires 3 or 4 lines of functor-heavy code, which is
slightly too much for a REPL/beginner-friendly ex-
perience.

• The “optimization framework” (a.k.a. extensible
program transformations) still uses an intermedi-
ary GADT; this “cuts” the variance propagation so
we cannot use subtyping in our definition of the
EDSL semantics. We have not decided yet whether
the mostly cosmetic optimization framework or the
marginal usefulness of sub-typing in this context
should be prioritized.

The Talk

The talk will walk through our implementation of
Biokepi’s EDSL while trying to be an introductory tu-
torial on module-based typed-tagless-final approaches.

2

http://okmij.org/ftp/tagless-final/course/
http://okmij.org/ftp/tagless-final/course/
https://bitbucket.org/knih/quel
https://github.com/hammerlab/ketrew
https://github.com/hammerlab/epidisco

	Brief History And Motivation
	Extensible EDSLs
	Limitations
	The Talk

